
Software Factories Relevance to Digital Games:
A Practical Discussion

André W. B. Furtado André L. M. Santos

Federal University of Pernambuco, Informatics Center, Brazil

Abstract

Software factories are focused on promoting

automation, enforcing predictability and stimulating

reuse, in order to turn craftsmanship into a

manufacturing process. Digital games development, on

the other hand, is an inherently creative discipline, a

peculiar domain heavily characterized by innovation

and dynamism. Given such a context, this poster

provides a substantiated and practical discussion, based

on software factory fundamentals, on how deeply

digital game development is subject of industrialization

by means of software factories.

Keywords: digital games development, software

factories.

Authors’ contact:
{awbf,alms}@cin.ufpe.br

1. Introduction

Software factories are focused on the transition of

software development from craftsmanship to

manufacturing. In short, a software factory can be

defined as a software product line that configures

extensible development tools and processes with

packaged content and guidance, carefully designed for

building and maintaining variants of an archetypal

product by adapting, assembling and configuring

framework-based components [Greenfield et al. 2004].

 On the other hand, digital games development is an

inherently creative discipline, perhaps more than any

other Computer Science domain. Uniqueness and

innovation are intrinsic attributes of successful game

titles. This raises a discussion about how deep digital

game development is subject of industrialization by

means of software factories. Such a discussion is

carried thorough this poster by analyzing the

challenges and implications of software factories under

the digital games development point-of-view.

 The remainder of this poster is organized as

follows. Section 2 establishes the differences between

economies of scale and scope, which are key to

understand software factories. Section 3 analyses

digital games development in the context of the

challenges and expected major implications of

software factories. Section 4, finally, concludes about

the presented research.

2. Economies of Scale and Scope

Software factories integrate critical innovations to

define a highly automated approach to software

development that exploits economies of scope, in

contrast to economies of scale.

 Economies of scale occur when multiple identical

instances of a single design are produced collectively,

rather than individually, as illustrated in Figure 1

[Greenfield 2004]. They arise in the production of

things like machine screws, when production assets

like machine tools are used to produce multiple

identical product instances. A design is created, along

with initial instances (prototypes), by a resource-

intensive process, called development, performed by

engineers. Many additional instances (copies) are then

produced by another process, called production,

performed by machines and/or low-cost labor, in order

to satisfy market demand.

Figure 1: Economies of Scale [Greenfield 2004]

Economies of scope arise when multiple similar but

distinct designs and prototypes are produced

collectively, rather than individually, as illustrated in

Figure 2 [Greenfield 2004]. In automobile

manufacturing, for example, multiple similar but

distinct automobile designs are often developed by

composing existing designs for subcomponents, such

as the chassis, body, interior and drive train, and

variants or models are often created by varying

features, such as engine and trim level, in existing

designs. In other words, economies of scope reduce the

cost of solving multiple similar but distinct problems in

a given domain by collectively solving their common

sub-problems and then assembling, adapting and

configuring the resulting partial solutions to solve the

top-level problems. Economies of scope can be

complemented by economies of scale, as illustrated by

the copies of each prototype shown in Figure 2.

Figure 2: Economies of Scope [Greenfield 2004]

Economies of scale arise in production, while

economies of scope arise in development. In heavy

industries, producing copies consumes expensive

resources, while in software it consumes inexpensive

digital and paper media. Another difference is that

software is more expensive to consume because of

customization. Economies of scale are lost when high

levels of customization are present.

Production in physical industries, however, has

been naively compared with development in software

[Greenfield 2004]. It makes no sense to look for

economies of scale in development of any kind,

whether of software or of physical goods. We can,

however, expect the industrialization of software

development to exploit economies of scope. This is

where software factories are situated.

3. Factory Challenges and Implications
vs. Digital Games Development

In order to check how software factories challenges

and implications affect digital games development, it is

important to identify the scenarios where software

development may exhibit economies of scale and when

it may exhibit economies of scope. Such distinction

follows below [Greenfield 2004]:

• In markets like the consumer desktop, where

copies of products like operating systems and

productivity applications are mass produced,

software exhibits economies of scale.

• In markets like the enterprise, where business

applications developed for competitive

advantage are seldom, if ever, mass produced,

software exhibits only economies of scope.

At a first glance, one could state that the first

scenario (economies of scale) is the single case where

digital games development is inserted. Therefore, since

software factories are expected to exploit economies of

scope, game development would not be so benefited

from them. Game development, however, behaves

similarly to the automobile industry regarding

economies of scale and scope. Once a digital game title

can be considered a COTS (commercial off-the-shelf)

product, it can certainly be exploited by economies of

scale as an automobile model with a specific

configuration can. Nevertheless, in the same way

economies of scope are used for an automobile model

customization (color, engine, chassis, accessories, etc.),

it can also be used for creating (configuring) games

belonging to a same genre. In resume, game

development falls in the case where economies of

scope are complemented by economies of scale.

While these arguments make it reasonable to say

that digital games development is subject of

industrialization by software factories, they do not

answer the question of which factory benefits games

development can take advantage of, and which may not

be applied at all. Since digital games are targeted at

players, not at enterprises (which chiefly exploit

economies of scope), the tendencies are that not all of

the industrialization can be applied to the domain. For

example, some concerns exploited by software

factories, such as business requirements and

deployment, are more critical to enterprise software

development than to digital games development.

 In order to have a clearer photograph of such

discussion, this research analyzed the challenges

focused by software factories and how they threaten

(are relevant to) digital games development. The

results are displayed in the following subsections, each

one grouping a set of serious challenges faced by the

development of new applications (according to

Greenfield et al. 2004) and their relevance level to

digital games (possible values are Low, Medium and

High).

3.1 New business requirements

Challenge: Support reengineered business processes

and an increasing focus on process-oriented

applications.

Relevance: Low. Apart from “serious games”, games

are generally not focused on business processes.

Challenge: Expose existing systems to massive user

loads created by web-based front ends.

Relevance: High. Many successful titles can be played

online.

Challenge: Design protocols (valid message

sequences) and enforceable service level agreements to

support processes than can span multiple enterprises.

Relevance: Medium. Communication protocols are

needed, but services that span multiple enterprises are

rare in games.

Challenge: Determine strategies for versioned data

and snapshots, such as price lists, that are widely

distributed yet have limited lifetimes.

Relevance: High. In games, such data are represented

by items such as demos, maps, scenarios, high-score

tables, saved games and so on.

Challenge: Cope with the complexity created by

transformed business models from business leaders

such as Wal-Mart, who insist on deep integration with

their partners.

Relevance: High. Such a challenge impacts in revenue

sharing models in digital games. Besides that, game

genres, gameplay experiences and interaction

paradigms keep evolving, as well as engines and tools.

Challenge: Integrate heterogeneous application

stovepipes and avoiding lossy transformations between

them.

Relevance: Medium. Integration is done for

components like servers and game engines, but it is not

so heterogeneous.

Challenge: Avoid reintroducing the batch era problem

of multiple file layouts and lack of data format

consistency in the rush to describe XML schemas for

every software service.

Relevance: High. Standards are desired for saving

games, defining scenarios, distributed communication

and so on.

Challenge: Determine strategies for wrapping older

applications executing on heterogeneous platforms.

Relevance: Low. Legacy is not a recurring problem in

game development.

Challenge: Customize packaged software to satisfy

proprietary requirements.

Relevance: High. Customization can arise in the form

of map/level editors, skins and MODs1.

Challenge: Address the special need of data

warehouse and business intelligence.

Relevance: Medium. While games generally do not

involve data warehousing, business intelligence is

crucial to some domains such as mobile device games.

Challenge: Demonstrate return on investment in

custom software in the face of rising software

development costs.

Relevance: High. Game engines are a formidable

example of a high effort which can provide return of

investment by means of customization.

3.2 Increasing focus on security

Challenge: Protect corporate data from hackers and

viruses, while giving customers and partners direct

access to the same resources.

1
 MOD, or “Modification”, is a package that can be

applied to a game to modify its appearance (graphics,

sounds, texts, etc.) or even its behavior. One of the

most famous MODs is the Counter-Strike MOD [Valve

2006], which can be applied to the Half-Life game.

Relevance: High. Games should not attempt to access

unauthorized data or execute unauthorized operations;

cheaters and hackers are a constant annoyance in

online versions.

Challenge: Mitigate the increasing risk of legal

liability from the improper use of corporate date.

Relevance: Medium. Although game data are

generally not corporate and/or confident data, part of a

users profile must be kept private.

3.3 Increasing deployment complexity

Challenge: Satisfy operational requirements, such as

security, reliability, performance and supportability, in

rapidly changing applications.

Relevance: High. Some of such concerns are critical

to digital games.

Challenge: Integrate new and existing systems using a

wide range of architectures and implementation

technologies.

Relevance: High. Integration with game engines, tools

and even servers is heavily demanded.

Challenge: Understand the effects of partitioning and

distribution on aggregate qualities of service

Relevance: Medium. Quality of service is impacted

by distribution in games by only a few variables, such

as performance.

Challenge: Design multitiered applications that deploy

correctly to server farms on segmented networks

partitioned by firewalls, with each server running a

mixture of widely varying host software

configurations.

Relevance: Medium. This issue may appear only in

some scenarios of online games, such as MMOGs

(Massively Multiplayer Online Games).

3.4 Decentralized software development

Challenge: Support applications developed by end-

users (for example, spreadsheets to 4GLs) while

enforcing corporate policy and maintaining the

integrity of corporate data.

Relevance: High. This concern rises in game

development by means of map/level editors, skins,

MODs or event behavior definition by players through

script languages.

Challenge: Integrate personal productivity

applications such as word processors and spreadsheets,

with back end systems.

Relevance: Low. Such a challenge does not apply,

since these applications are generally not integrated

with digital games.

Challenge: Work with applications or components that

are increasingly outsourced to development centers in

remote locations forcing a discipline on requirements

designs and acceptance tests that was often neglected

in the past.

Relevance: Medium. Outsourcing may appear in the

form of graphics modeling, artificial intelligence

programming, level design, custom tool creation and

other tasks, although this is not very common today.

Challenge: Make departmental application integrate

effectively and scale to satisfy enterprise requirements.

Relevance: Low. Enterprise scalability makes no

sense to digital games.

3.5 Software Development Implications

A similar analysis was done to the expected major

implications of software factories. Such implications

(also according to Greenfield et al. 2004) were

analyzed and their relevance to computers game

development was depicted, as shown below.

Implication: Development by assembly: only a small

part of each application will be developed from

scratch.

Relevance: High. Many aspects of game development,

such as map generation and entity rendering, for

example, are positively impacted by this implication.

Implication: Software supply chains: each participant

consumes logical and/or physical products from one or

more upstream suppliers, adds value, usually by

incorporating them into more complex products, and

supplies the results to downstream consumers.

Relevance: Low. Despite supply chains can be applied

to some scenarios, such as graphics modeling, they are

more applicable to other domains than game

development.

Implication: Standardization of specification formats,

packaging formats, architectures and patterns.

Relevance: High. Games development deeply

welcomes such standardization. However, this

challenge may be hard to overcome due to industrial

secrecy and piracy issues.

Implication: Relationship management: managing

costumer and relationship will become more important.

Relevance: Medium. A “digital game requirement” is

not so well defined as in other domains, while beta-

testers and publishers still have to be dealt with (obs:

“costumers” should not be mistaken for “end users”).

Implication: Domain specific assets: product line

developers will build assets used by product

developers.

Relevance: High. Game engines, language-based

tools and other frameworks/tools are genuine examples

of product line assets used by game developers.

Implication: Organizational changes: much about

development and development organizations will

change.

Relevance: High. Such an implication is relevant to

virtually all software development domains.

Implication: Mass customization of software: software

may eventually be mass customized like PCs ordered

on the web today.

Relevance: Medium. Letting the player to completely

configure and customize a game genre in order to

create its own instance, and then order it, is still a novel

scenario.

4. Conclusions

The study previously presented makes it possible to

conclude that, although digital games development is

clearly a domain where software factories are less

effective than domains which deeply exploit

economies of scope and customization, the number of

addressed challenges and positive implications makes

it worth to try the approach.

In addition, the major requirement for establishing

a software factory (ongoing demands for solving

problems in a common domain) is clearly present in

game development and makes the use of the approach

even more encouraging. Therefore, this research

believes that there is enough evidence that the same

way software factories provide sets of abstractions

customized to meet the needs of specific families of

systems, like e-commerce, financial arbitrage, or home

banking applications, digital games belonging to a

specific genre (such as 2D board games, 2D arcade

games, 2D ½ isometric strategy games or 3D first-

person shooters) may also be considered as families of

systems which could benefit from software factories.

Finally, the productivity and automation provided

by single factory fundamentals alone, such as modeling

through visual domain-specific languages (DSLs)

[Deursen et al. 2000] and code generators, are

worthwhile additions to games development even

without a complete software factories background.

References

DEURSEN, A., KLINT, P. AND VISSER, J., 2000. Domain-

Specific Languages: An Annotated Bibliography [online]

Available from: homepages.cwi.nl/~arie/papers/dslbib

[Accessed 31 August 2006].

GREENFIELD, J., SHORT, K., COOK, S., KENT, S. AND CRUPI, J.,

2004. Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. Wiley &

Sons, 2004.

GREENFIELD, J., 2004. The Case for Software Factories

[online] Microsoft Developers Network. Available from:

http://msdn.microsoft.com/vstudio/teamsystem/workshop

/sf/default.aspx?pull=/library/en-

us/dnmaj/html/aj3softfac.asp [Accessed 28 August 2006]

VALVE, 2006. Counter-Strike Source [online] Available

from: www.counter-strike.net [Accessed 31 August

2006].

